Preface
It surprised me that I wasn’t able to find a libre and gratis book for Mathematical Formulas. Math being an open subject, a thing that cannot be patented and copyrighted, should have an open formulations book that has all math formulas in it. So I started this project.
I am writing what I know and what I can find on the internet, but I am sure there are a lot of things I missed out on, and there should be a lot of mistakes in this book. I hope you, the reader who loves mathematics, will spot them out, reach me at mindaslab@protonmail.com, or +91 8428050777, so that I can correct it.
This book is hosted on codeberg.org, I encourage the reader to clone this book, make changes and submit it so that this book becomes more refined.
Let us, as free humans, give a libre matthematical formula book to this world.
Mathematical Symbols
Greek Alphabets
Upcase |
Downcase |
How to read |
Α |
α |
alpha |
Β |
β |
beta |
Γ |
γ |
gamma |
Δ |
δ |
delta |
Ε |
ε |
epsilon |
Ζ |
ζ |
zêta |
Η |
η |
êta |
Θ |
θ |
thêta |
Ι |
ι |
iota |
Κ |
κ |
kappa |
Λ |
λ |
lambda |
Μ |
μ |
mu |
Ν |
ν |
nu |
Ξ |
ξ |
xi |
Ο |
ο |
omikron |
Π |
π |
pi |
Ρ |
ρ |
rho |
Σ |
σ, ς |
sigma |
Τ |
τ |
tau |
Υ |
υ |
upsilon |
Φ |
φ |
phi |
Χ |
χ |
chi |
Ψ |
ψ |
psi |
Ω |
ω |
omega |
Mathematical Constants
Metric Prefixes
| Name | Symbol | Base 10 | Decimal |
|---|---|---|---|
quetta |
Q |
\$10^30\$ |
1000000000000000000000000000000 |
ronna |
R |
\$10^27\$ |
1000000000000000000000000000 |
yotta |
Y |
\$10^24\$ |
1000000000000000000000000 |
zetta |
Z |
\$10^21\$ |
1000000000000000000000 |
exa |
E |
\$10^18\$ |
1000000000000000000 |
peta |
P |
\$10^15\$ |
1000000000000000 |
tera |
T |
\$10^12\$ |
1000000000000 |
giga |
G |
\$10^9\$ |
1000000000 |
mega |
M |
\$10^6\$ |
1000000 |
kilo |
k |
\$10^3\$ |
1000 |
hecto |
h |
\$10^2\$ |
100 |
deca |
da |
\$10^1\$ |
10 |
— |
— |
\$10^0\$ |
1 |
deci |
d |
\$10^{−1}\$ |
0.1 |
centi |
c |
\$10^{−2}\$ |
0.01 |
milli |
m |
\$10^{−3}\$ |
0.001 |
micro |
μ |
\$10^{−6}\$ |
0.000001 |
nano |
n |
\$10^−9\$ |
0.000000001 |
pico |
p |
\$10^{−12}\$ |
0.000000000001 |
femto |
f |
\$10^{−15}\$ |
0.000000000000001 |
atto |
a |
\$10^{−18}\$ |
0.000000000000000001 |
zepto |
z |
\$10^{−21}\$ |
0.000000000000000000001 |
yocto |
y |
\$10^{−24}\$ |
0.000000000000000000000001 |
ronto |
r |
\$10^{−27}\$ |
0.000000000000000000000000001 |
quecto |
q |
\$10^{−30}\$ |
0.000000000000000000000000000001 |
Multiplication Tables
| 1 | 2 | 3 |
|---|---|---|
\$1 xx 1 = 1\$ \$1 xx 2 = 2\$ \$1 xx 3 = 3\$ \$1 xx 4 = 4\$ \$1 xx 5 = 5\$ \$1 xx 6 = 6\$ \$1 xx 7 = 7\$ \$1 xx 8 = 8\$ \$1 xx 9 = 9\$ \$1 xx 10 = 10\$ |
\$2 xx 1 = 2\$ \$2 xx 2 = 4\$ \$2 xx 3 = 6\$ \$2 xx 4 = 8\$ \$2 xx 5 = 10\$ \$2 xx 6 = 12\$ \$2 xx 7 = 14\$ \$2 xx 8 = 16\$ \$2 xx 9 = 18\$ \$2 xx 10 = 20\$ |
\$3 xx 1 = 3\$ \$3 xx 2 = 6\$ \$3 xx 3 = 9\$ \$3 xx 4 = 12\$ \$3 xx 5 = 15\$ \$3 xx 6 = 18\$ \$3 xx 7 = 21\$ \$3 xx 8 = 24\$ \$3 xx 9 = 27\$ \$3 xx 10 = 30\$ |
4 |
5 |
6 |
\$4 xx 1 = 4\$ \$4 xx 2 = 8\$ \$4 xx 3 = 12\$ \$4 xx 4 = 16\$ \$4 xx 5 = 20\$ \$4 xx 6 = 24\$ \$4 xx 7 = 28\$ \$4 xx 8 = 32\$ \$4 xx 9 = 36\$ \$4 xx 10 = 40\$ |
\$5 xx 1 = 5\$ \$5 xx 2 = 10\$ \$5 xx 3 = 15\$ \$5 xx 4 = 20\$ \$5 xx 5 = 25\$ \$5 xx 6 = 30\$ \$5 xx 7 = 35\$ \$5 xx 8 = 40\$ \$5 xx 9 = 45\$ \$5 xx 10 = 50\$ |
\$6 xx 1 = 6\$ \$6 xx 2 = 12\$ \$6 xx 3 = 18\$ \$6 xx 4 = 24\$ \$6 xx 5 = 30\$ \$6 xx 6 = 36\$ \$6 xx 7 = 42\$ \$6 xx 8 = 48\$ \$6 xx 9 = 54\$ \$6 xx 10 = 60\$ |
7 |
8 |
9 |
\$7 xx 1 = 7\$ \$7 xx 2 = 14\$ \$7 xx 3 = 21\$ \$7 xx 4 = 28\$ \$7 xx 5 = 35\$ \$7 xx 6 = 42\$ \$7 xx 7 = 49\$ \$7 xx 8 = 56\$ \$7 xx 9 = 63\$ \$7 xx 10 = 70\$ |
\$8 xx 1 = 8\$ \$8 xx 2 = 16\$ \$8 xx 3 = 24\$ \$8 xx 4 = 32\$ \$8 xx 5 = 40\$ \$8 xx 6 = 48\$ \$8 xx 7 = 56\$ \$8 xx 8 = 64\$ \$8 xx 9 = 72\$ \$8 xx 10 = 80\$ |
\$9 xx 1 = 9\$ \$9 xx 2 = 18\$ \$9 xx 3 = 27\$ \$9 xx 4 = 36\$ \$9 xx 5 = 45\$ \$9 xx 6 = 54\$ \$9 xx 7 = 63\$ \$9 xx 8 = 72\$ \$9 xx 9 = 81\$ \$9 xx 10 = 90\$ |
10 |
11 |
12 |
\$10 xx 1 = 10\$ \$10 xx 2 = 20\$ \$10 xx 3 = 30\$ \$10 xx 4 = 40\$ \$10 xx 5 = 50\$ \$10 xx 6 = 60\$ \$10 xx 7 = 70\$ \$10 xx 8 = 80\$ \$10 xx 9 = 90\$ \$10 xx 10 = 100\$ |
\$11 xx 1 = 11\$ \$11 xx 2 = 22\$ \$11 xx 3 = 33\$ \$11 xx 4 = 44\$ \$11 xx 5 = 55\$ \$11 xx 6 = 66\$ \$11 xx 7 = 77\$ \$11 xx 8 = 88\$ \$11 xx 9 = 99\$ \$11 xx 10 = 110\$ |
\$12 xx 1 = 12\$ \$12 xx 2 = 24\$ \$12 xx 3 = 36\$ \$12 xx 4 = 48\$ \$12 xx 5 = 60\$ \$12 xx 6 = 72\$ \$12 xx 7 = 84\$ \$12 xx 8 = 96\$ \$12 xx 9 = 108\$ \$12 xx 10 = 120\$ |
13 |
14 |
15 |
\$13 xx 1 = 13\$ \$13 xx 2 = 26\$ \$13 xx 3 = 39\$ \$13 xx 4 = 52\$ \$13 xx 5 = 65\$ \$13 xx 6 = 78\$ \$13 xx 7 = 91\$ \$13 xx 8 = 104\$ \$13 xx 9 = 117\$ \$13 xx 10 = 130\$ |
\$14 xx 1 = 14\$ \$14 xx 2 = 28\$ \$14 xx 3 = 42\$ \$14 xx 4 = 56\$ \$14 xx 5 = 70\$ \$14 xx 6 = 84\$ \$14 xx 7 = 98\$ \$14 xx 8 = 112\$ \$14 xx 9 = 126\$ \$14 xx 10 = 140\$ |
\$15 xx 1 = 15\$ \$15 xx 2 = 30\$ \$15 xx 3 = 45\$ \$15 xx 4 = 60\$ \$15 xx 5 = 75\$ \$15 xx 6 = 90\$ \$15 xx 7 = 105\$ \$15 xx 8 = 120\$ \$15 xx 9 = 135\$ \$15 xx 10 = 150\$ |
16 |
17 |
18 |
\$16 xx 1 = 16\$ \$16 xx 2 = 32\$ \$16 xx 3 = 48\$ \$16 xx 4 = 64\$ \$16 xx 5 = 80\$ \$16 xx 6 = 96\$ \$16 xx 7 = 112\$ \$16 xx 8 = 128\$ \$16 xx 9 = 144\$ \$16 xx 10 = 160\$ |
\$17 xx 1 = 17\$ \$17 xx 2 = 34\$ \$17 xx 3 = 51\$ \$17 xx 4 = 68\$ \$17 xx 5 = 85\$ \$17 xx 6 = 102\$ \$17 xx 7 = 119\$ \$17 xx 8 = 136\$ \$17 xx 9 = 153\$ \$17 xx 10 = 170\$ |
\$18 xx 1 = 18\$ \$18 xx 2 = 36\$ \$18 xx 3 = 54\$ \$18 xx 4 = 72\$ \$18 xx 5 = 90\$ \$18 xx 6 = 108\$ \$18 xx 7 = 126\$ \$18 xx 8 = 144\$ \$18 xx 9 = 162\$ \$18 xx 10 = 180\$ |
19 |
20 |
|
\$19 xx 1 = 19\$ \$19 xx 2 = 38\$ \$19 xx 3 = 57\$ \$19 xx 4 = 76\$ \$19 xx 5 = 95\$ \$19 xx 6 = 114\$ \$19 xx 7 = 133\$ \$19 xx 8 = 152\$ \$19 xx 9 = 171\$ \$19 xx 10 = 190\$ |
\$20 xx 1 = 20\$ \$20 xx 2 = 40\$ \$20 xx 3 = 60\$ \$20 xx 4 = 80\$ \$20 xx 5 = 100\$ \$20 xx 6 = 120\$ \$20 xx 7 = 140\$ \$20 xx 8 = 160\$ \$20 xx 9 = 180\$ \$20 xx 10 = 200\$ |
Analytical Geometry
Point
Distance
Distance between two points \$(x_1, y_1)\$ and \$(x_2, y_2)\$
\$d = sqrt { (x_1 - x_2)^2 + (y_1 - y_2)^2}\$
Collinear points
Line
Intersection of two lines
Parallel lines
Perpendicular lines
Check if line passes through a point
Plane
Check if line lies on a plane
Check if point lies on a plane
Check if two points are on the same side of plane
Angle between line and plane
Length Conversions
Area Conversions
Volume Conversions
Weight Conversions
Energy Conversions
Power Conversions
Speed Conversions
Temperature Conversions
\$C = 5/9 * (F - 32)\$
\$F = 9/5 * C + 32\$
\$K = C + 273.15\$
\$C = K - 273.15\$
\$F = (9/5) * (K - 273.15) + 32\$
\$K = (5/9) * (F - 32) + 273.15\$
2D
Square
\$A = s^2\$
\$P = 4s\$
Rectangle
\$A = l * b\$
\$P = 2(l + b)\$
Circle
\$A = pi * r^2\$
\$P = 2pi * r\$
Circle Sector
\$A = pi * r * theta\$
Where \$theta\$ is the angle of sector, in radians. \$r\$ is the radius of circle.
Triangle
\$A = 1/2 * b * h\$
\$s = {a + b + c} / 2\$
\$A = sqrt {s * (s - a) * (s - b) * (s - c)}\$
\$P = a + b + c\$
Quadrilateral
Parallelogram
\$A = b * h\$
Rhombus
Trapezium
Trapezoid
Ellipse
Area
\$A = π * a * b\$
Perimeter
\$P ~~ pi (a + b)\$
\$P ~~ pi sqrt { 2 * (a^2 + b^2) }\$
\$P ~~ pi 3/2 * (a+b) * sqrt { ab }\$
Parabola
Hyperbola
3D
Cube
Volume
\$V = s^3\$
Surface Area
\$A = 6.s^2\$
Cuboid
Volume
\$V = l.b.h\$
Surface Area
\$A = 2.(lb + bh +hl)\$
Cylinder
Volume
\$V = π.r^2.h\$
Surface Area
\$A = 2π.rh\$
Cone
Volume
Sphere
Volume
\$4/3 pi r^3\$
Surface Area
\$4 pi r^2\$
Torus
Pyramid
Prism
Complex Numbers
1. Basic Definitions
Complex Number Standard Form:
\$z = a + bi\$
where a is the real part, b is the imaginary part, and i is the imaginary unit.
Imaginary Unit:
\$i^2 = -1\$
\$i^3 = -i\$
\$i^4 = 1\$
\$i^(4k) = 1, i^(4k+1) = i, i^(4k+2) = -1, i^(4k+3) = -i\$
Real and Imaginary Parts:
\$Re(z) = a\$
\$Im(z) = b\$
2. Complex Conjugate
Definition:
\$bar z = conj(z) = a - bi\$
Properties:
\$z + bar z = 2a = 2*Re(z)\$
\$z - bar z = 2bi = 2i*Im(z)\$
\$z * bar z = a^2 + b^2 = |z|^2\$
\$bar (bar z) = z\$
\$bar (z1 + z2) = bar z1 + barz2\$
\$bar (z1 * z2) = bar z1 * bar z2\$
\$bar frac {z1} {z2} = bar (z1) / bar (z2)\$
3. Modulus (Absolute Value)
Definition:
\$|z| = sqrt(a^2 + b^2) = sqrt(z * z*)\$
Properties:
\$|z| >= 0\$
\$|z| = 0 " if and only if " z = 0\$
\$|z1 * z2| = |z1| * |z2|\$
\$|z1/z2| = |z1|/|z2| " " (z2 != 0)\$
\$|z1 + z2| <= |z1| + |z2|\$ (Triangle Inequality)
\$||z1| - |z2|| <= |z1 - z2|\$
\$|z^n| = |z|^n\$
4. Argument (Phase)
Definition:
\$arg(z) = theta = arctan(b/a)\$ (with appropriate quadrant adjustment)
Principal Argument:
\$Arg(z) = theta " where " -pi < theta <= pi\$
Properties:
\$arg(z1 * z2) = arg(z1) + arg(z2) + 2pik\$
\$arg(z1/z2) = arg(z1) - arg(z2) + 2pik\$
\$arg(z^n) = n * arg(z) + 2pik\$
\$arg(z*) = -arg(z) + 2pik\$
5. Polar Form
Polar Representation:
\$z = r * (cos(theta) + i*sin(theta)) = r * e^(itheta)\$
where \$r = |z|\$ and \$theta = arg(z)\$
Euler’s Formula:
\$e^(itheta) = cos(theta) + i*sin(theta)\$ \$e^(-itheta) = cos(theta) - i*sin(theta)\$
Conversion Formulas:
Cartesian to Polar: \$r = sqrt(a^2 + b^2)\$ \$theta = arctan(b/a)\$ (with quadrant correction)
Polar to Cartesian: \$a = r * cos(theta)\$ \$b = r * sin(theta)\$
6. Arithmetic Operations
Addition:
\$(a1 + b1*i) + (a2 + b2*i) = (a1 + a2) + (b1 + b2)*i\$
Subtraction:
\$(a1 + b1*i) - (a2 + b2*i) = (a1 - a2) + (b1 - b2)*i\$
Multiplication:
\$(a1 + b1*i) * (a2 + b2*i) = (a1*a2 - b1*b2) + (a1*b2 + b1*a2)*i\$
Division:
\$(a1 + b1*i) / (a2 + b2*i) = [(a1*a2 + b1*b2) + (b1*a2 - a1*b2)*i\$ / (a2^2 + b2^2)]
Polar Form Operations:
\$z1 * z2 = r1*r2 * e^(i(theta1 + theta2))\$ \$z1 / z2 = (r1/r2) * e^(i(theta1 - theta2))\$
7. Powers and Roots
De Moivre’s Theorem:
\$z^n = r^n * e^(i*n*theta) = r^n * (cos(n*theta) + i*sin(n*theta))\$
nth Roots:
\$z^(1/n) = r^(1/n) * e^(i*(theta + 2pik)/n)\$
where k = 0, 1, 2, …, n-1 gives all n distinct roots.
Square Roots:
\$sqrt(a + bi) = +-[sqrt((r + a)/2) + i*sgn(b)*sqrt((r - a)/2)\$]
where \$r = |a + bi|\$ and sgn(b) is the sign of b.
Principal nth Root:
\$z^(1/n) = |z|^(1/n) * e^(i*Arg(z)/n)\$
8. Exponential and Logarithmic Functions
Complex Exponential:
\$e^z = e^(a+bi) = e^a * e^(bi) = e^a * (cos(b) + i*sin(b))\$
Properties of Complex Exponential:
\$e^(z1 + z2) = e^z1 * e^z2\$ \$e^(z1 - z2) = e^z1 / e^z2\$ \$(e^z)^n = e^(n*z)\$ \$|e^z| = e^(Re(z))\$ \$arg(e^z) = Im(z) + 2pik\$
Complex Logarithm:
\$log(z) = ln(|z|) + i*(arg(z) + 2pik)\$
Principal Logarithm:
\$Log(z) = ln(|z|) + i*Arg(z)\$
Properties:
\$log(z1 * z2) = log(z1) + log(z2) + 2piki\$
\$log(z1/z2) = log(z1) - log(z2) + 2piki\$
\$log(z^n) = n*log(z) + 2piki\$
\$e^(log(z)) = z\$
\$log(e^z) = z + 2piki\$
9. Trigonometric Functions
Complex Sine:
\$sin(z) = (e^(iz) - e^(-iz)) / (2i)\$
\$sin(x + iy) = sin(x)*cosh(y) + i*cos(x)*sinh(y)\$
Complex Cosine:
\$cos(z) = (e^(iz) + e^(-iz)) / 2\$
\$cos(x + iy) = cos(x)*cosh(y) - i*sin(x)*sinh(y)\$
Complex Tangent:
\$tan(z) = sin(z) / cos(z) = (e^(iz) - e^(-iz)) / (i*(e^(iz) + e^(-iz)))\$
\$tan(x + iy) = [sin(2x) + i*sinh(2y)\$ / [cos(2x) + cosh(2y)]]
Fundamental Identities:
\$sin^2(z) + cos^2(z) = 1\$
\$sin(z + 2pi) = sin(z)\$
\$cos(z + 2pi) = cos(z)\$
\$tan(z + pi) = tan(z)\$
10. Hyperbolic Functions
Complex Hyperbolic Sine:
\$sinh(z) = (e^z - e^(-z)) / 2\$
\$sinh(x + iy) = sinh(x)*cos(y) + i*cosh(x)*sin(y)\$
Complex Hyperbolic Cosine:
\$cosh(z) = (e^z + e^(-z)) / 2\$
\$cosh(x + iy) = cosh(x)*cos(y) + i*sinh(x)*sin(y)\$
Complex Hyperbolic Tangent:
\$tanh(z) = sinh(z) / cosh(z)\$
\$tanh(x + iy) = [sinh(2x) + i*sin(2y)\$ / [cosh(2x) + cos(2y)]]
Relationships with Trigonometric Functions:
\$sin(iz) = i*sinh(z)\$
\$cos(iz) = cosh(z)\$
\$sinh(iz) = i*sin(z)\$
\$cosh(iz) = cos(z)\$
11. Special Values and Identities
Common Values:
\$e^(ipi) = -1\$ (Euler’s Identity)
\$e^(ipi/2) = i\$
\$e^(ipi/4) = (1 + i)/sqrt(2)\$
\$e^(2pii) = 1\$
Useful Identities:
\$cos(theta) = (e^(itheta) + e^(-itheta)) / 2\$
\$sin(theta) = (e^(itheta) - e^(-itheta)) / (2i)\$
\$1 + e^(itheta) = 2*cos(theta/2) * e^(itheta/2)\$
\$1 - e^(itheta) = -2i*sin(theta/2) * e^(itheta/2)\$
12. Geometric Interpretations
Distance Formula:
\$|z1 - z2| = " distance between " z1 " and " z2 " in complex plane"\$
Multiplication by i:
\$i * z " rotates " z " by " 90° " counterclockwise"\$
Multiplication by e^(iθ):
\$e^(itheta) * z " rotates " z " by angle " theta\$
Reflection:
\$z* " reflects " z " across the real axis"\$
13. Series Expansions
Exponential Series:
\$e^z = sum_(n=0)^oo (z^n)/(n!)\$
Sine Series:
\$sin(z) = sum_(n=0)^oo ((-1)^n * z^(2n+1))/((2n+1)!)\$
Cosine Series:
\$cos(z) = sum_(n=0)^oo ((-1)^n * z^(2n))/((2n)!)\$
Geometric Series:
\$1/(1-z) = sum_(n=0)^oo z^n " for " |z| < 1\$
Note: In these formulas, k represents any integer, and all angles are measured in radians unless otherwise specified.
Calculus
Differentiation
Elementry Functions
\$f'(x) = lim_{\Deltax->0} frac {f(x + \Delta x) - f(x)} {\Deltax}\$
\$frac{ d e^x } {dx} = e^x\$
\$frac{ d ln(x) } {dx} = 1 / x , x > 0\$
\$frac{ d a^x } {dx} = a^x ln(a) , a > 0, a ne 1\$
\$frac{ d sqrt(x) } {dx} = 1 / {2sqrt(x)}\$
Trigonometric Functions
\$frac { d sin x } {dx} = cosx\$
\$frac { d cos x } {dx} = -sinx\$
\$frac { d tan x } {dx} = sec^2x , x ne (2n+1). pi/2 , n in NN\$
\$frac { d cot x } {dx} = cosec^2x , x ne n pi , n in NN\$
\$frac { d sec x } {dx} = secx * tanx , x ne (2n+1) * pi , n in NN\$
\$frac { d cosec x } {dx} = cosecx * cot, x ne n pi , n in NN\$
Hyperbolic Functions
\$frac{ d sinh x } {dx} = coshx\$
\$frac{ d cosh x } {dx} = sinhx\$
\$frac{ d tanh x } {dx} = sech^2x\$
\$frac{ d coth x } {dx} = -cosech^2x\$
\$frac{ d sech x } {dx} = - sechx * tanhx\$
\$frac{ d cosech x } {dx} = - cosechx * cothx\$
Inverse Trigonometric Functions
\$frac {d sin^ -1 x} {dx} = frac{1}{sqrt {1 - x^2} } , -1 < x < 1 \$
\$frac {d cos ^ -1 x} {dx} = frac{-1}{sqrt {1 - x^2} } , -1 < x < 1\$
\$frac {d tan ^ -1 x} {dx} = frac{1}{1 + x^2}\$
\$frac {d cot ^ -1 x} {dx} = frac{-1}{1 + x^2}\$
\$frac {d cosec ^ -1 x} {dx} = frac{-1} { |x| sqrt(x^2 - 1)} , |x| > 1\$
\$frac {d sec ^ -1 x} {dx} = frac{1} { |x| sqrt(x^2 - 1)}\$
Inverse Hyperbolic Functions
\$frac {d sinh ^ -1 x} {dx} = frac{1} { sqrt(x^2 + 1)} \$
\$frac {d cosh ^ -1 x} {dx} = frac{-1} { sqrt(x^2 + 1)}\$
\$frac {d tanh ^ -1 x} {dx} = frac{1} {1 - x^2} \$
\$frac {d cot ^ -1 x} {dx} = frac{1} {x * (1 - x^2)} \$
stem[frac {d cosech ^ -1 x} {dx} = frac{1} {x sqrt(x^2 + 1)}]
\$frac {d sech ^ -1 x} {dx} = frac{-1} {x sqrt(x^2 + 1)}\$
Differential Calculus Rules
\$frac {dC} {dx} = 0\$ , where \$C\$ is a constant
\$frac {d C f(x)} {dx} = C. frac{d f(x)} {dx}\$ , where \$C\$ is a constant
\$frac {d x^n} {dx} = n * x ^ {n-1}\$
\$frac {d f^n(x)} {dx} = n * f(x) ^ {n-1} * frac {df(x)} { dx}\$
\$frac {d f(x) + g(x)} {dx} = frac {d f(x)} {dx} + frac {dg(x)} {dx}\$
\$frac {d f(x) - g(x)} {dx} = frac {d f(x)} {dx} - frac {dg(x)} {dx}\$
\$frac {d f(x) + g(x)} {dx} = frac {d f(x)} {dx} * frac {dg(x)} {dx}\$
\$Delta(u / v) = {u * Delta v + v * Delta u} / v^2\$, where \$u = f(x)\$, \$v = g(x)\$, \$Delta\$ is \$d/dx\$
If \$h(x) = f(g(x))\$, then differential of \$h(x)\$ is \$h'(x) = f'(g(x)) * g'(x)\$
\$dz/dx = dz/dy * dy/dx\$
Integration
stem:[]
stem:[]
stem:[]
stem:[]
Financial
Simple Interest
\$I = {PNR} / 100\$
Compound Interest
\$A = P (1 + R / 100)^N\$
\$I = A - P = P (1 + R / 100)^N - P\$
\$I = P (1 + R / 100)^N - P\$
EMI
\$E = P * R * (1 + R)^N / ((1 + R)^N - 1)\$
Laplacian
Logarithms
Matrix
Probability & Statistics
Trigonometry
Pythagoras theorem
\$hyp^2 = sqrt {opp^2 + adj^2}\$
Trigonometric Ratio’s
\$sin(theta) = {opp} / {hyp}\$
\$cos(theta) = {adj} / {hyp}\$
\$tan(theta) = {opp} / {adj}\$
\$cot(theta) = {hyp} / {opp}\$
\$sec(theta) = {adj} / {hyp}\$
\$cosec(theta) = {hyp} / {adj}\$
\$cosec(theta) = 1 / {sin(theta)}\$
\$sec(theta) = 1 / {cos(theta)}\$
\$cot(theta) = 1 / {tan(theta)}\$
\$sin(theta) = 1 / {cosec(theta)}\$
\$cos(theta) = 1 / {sec(theta)}\$
\$tan(theta) = 1 / {cot(theta)}\$
\$tan(theta) = {sec(theta)} / {cosec(theta)}\$
\$cot(theta) = {cosec(theta)} / {sec(theta)}\$
Trigonometric Ratio Table
| Angle (°) | Angle (rad) | sin(θ) | cos(θ) | tan(θ) | csc(θ) | sec(θ) | cot(θ) |
|---|---|---|---|---|---|---|---|
\$0\$ |
\$0\$ |
\$0\$ |
\$1\$ |
\$0\$ |
\$∞\$ |
\$1\$ |
\$∞\$ |
\$30\$ |
\$π/6\$ |
\$1/2\$ |
\$sqrt(3)/2\$ |
\$1/sqrt(3)\$ |
\$2\$ |
\$2/sqrt(3)\$ |
\$sqrt(3)/3\$ |
\$45\$ |
\$π/4\$ |
\$sqrt(2)/2\$ |
\$sqrt(2)/2\$ |
\$1\$ |
\$sqrt(2)\$ |
\$sqrt(2)\$ |
\$1\$ |
\$60\$ |
\$π/3\$ |
\$sqrt(3)/2\$ |
\$1/2\$ |
\$sqrt(3)\$ |
\$2/sqrt(3)\$ |
\$2\$ |
\$sqrt(3)\$ |
\$90\$ |
\$π/2\$ |
\$1\$ |
\$0\$ |
\$∞\$ |
\$1\$ |
\$∞\$ |
\$0\$ |
Trigonometric Ratios Identities
\$sin^2(theta) + cos^2(theta) = 1\$
\$sec^2(theta) - tan^2(theta) = 1\$
\$cosec^2(theta) - cot^2(theta) = 1\$
Complementary and Supplementary Identities
\$sin(90^{o} - theta) = cos theta \$
\$cos(90^{o} - theta) = sin theta \$
\$tan(90^{o} - theta) = cot theta \$
\$cosec(90^{o} - theta) = sec theta \$
\$sec(90^{o} - theta) = cosec theta \$
\$cot(90^{o} - theta) = tan theta \$
\$sin (180° - θ) = sin θ\$
\$cos (180° - θ) = -cos θ\$
\$tan (180° - θ) = -tan θ\$
\$cosec (180° - θ) = cosec θ\$
\$sec (180° - θ) = -sec θ\$
\$cot (180° - θ) = -cot θ\$
Trigonometry Periodic Identities (in Radians)
\$sin (π/2 – θ) = cos θ\$
\$cos (π/2 – θ) = sin θ\$
\$sin (2π + θ) = sin θ\$
\$cos (2π + θ) = cos θ\$
\$sin (π/2 + θ) = cos θ\$
\$cos (π/2 + θ) = – sin θ\$
\$sin (π – θ) = sin θ\$
\$cos (π – θ) = – cos θ\$
\$sin (π + θ) = – sin θ\$
\$cos (π + θ) = – cos θ\$
\$sin (3π/2 – θ) = – cos θ\$
\$cos (3π/2 – θ) = – sin θ\$
\$sin (3π/2 + θ) = – cos θ\$
\$cos (3π/2 + θ) = sin θ\$
\$sin (2π – θ) = – sin θ\$
\$cos (2π – θ) = cos θ\$
Sum and Difference Identities
\$sin(A+B) = sin A cos B + cos A sin B\$
\$sin(A-B) = sin A cos B - cos A sin B\$
\$cos(A+B) = cos A cos B - sin A sin B\$
\$cos(A-B) = cos A cos B + sin A sin B\$
\$tan(A+B) = {(tan A + tan B)} / {(1 - tan A tan B)}\$
\$tan(A-B) = {(tan A - tan B)} / {(1 + tan A tan B)}\$
\$cot(A + B) = {cot A cot B -1} / {cot B - cot A}\$
\$cot(A - B) = {cot A cot B + 1} / {cot B - cot A}\$
\$2 sin A⋅cos B = sin(A + B) + sin(A - B)\$
\$2 cos A⋅cos B = cos(A + B) + cos(A - B)\$
\$2 sin A⋅sin B = cos(A - B) - cos(A + B)\$
Sum and Product Identities
\$sinx⋅cosy = {sin(x + y) + sin(x − y)}/2\$
\$cosx⋅cosy = {cos(x + y) + cos(x − y)}/2\$
\$sinx⋅siny = {cos(x − y) − cos(x + y)}/2\$
\$sinx + siny = 2(sin((x + y)/2)cos((x − y)/2))\$
\$sinx − siny = 2(cos((x + y)/2)sin((x − y)/2))\$
\$cosx + cosy = 2(cos((x + y)/2)cos((x − y)/2))\$
\$cosx − cosy = −2(sin((x + y)/2)sin((x − y)/2))\$
Inverse Trigonometry Formulas
\$sin^-1 (-x) = -sin^-1 x\$
\$cos^-1 (-x) = π - cos^-1 x\$
\$tan^-1 (-x) = -tan^-1 x\$
\$cosec^-1 (-x) = -cosec^-1 x\$
\$sec^-1 (-x) = π - sec^-1 x\$
\$cot^-1 (-x) = π - cot^-1 x\$
Half, Double, and Triple-Angles Trigonometric Ratios Identities
\$sin 2θ = 2 sinθ cosθ\$
\$cos 2θ = cos^2θ - sin^2θ\$
\$cos 2θ = 2 cos^2θ - 1\$
\$cos 2θ = 1 - 2 sin^2θ\$
\$cos 2θ = {1 - tan^2 θ}/{1 + tan^2 θ}\$
\$tan 2θ = {2 tanθ} / {1 - tan^2θ}\$
\$sec 2θ = sec^2 θ / {2 - sec^2 θ}\$
\$cosec 2θ = {sec θ. cosec θ} / 2\$
\$cot 2θ = {cot θ - tan θ}/2\$
\$sin(theta / 2) = +- sqrt { {1 - cos theta } / 2}\$
\$cos(theta / 2) = +- sqrt { {1 + cos theta } / 2}\$
\$tan(theta / 2) = +- sqrt { {1 - cos theta} / { 1 + cos theta } }\$
\$sin 3θ = 3sin θ - 4sin^3θ\$
\$cos 3θ = 4cos^3θ - 3cos θ\$
\$tan 3θ = (3tanθ - tan^3θ)/(1 - 3tan^2θ)\$