Preface

It surprised me that I wasn’t able to find a libre and gratis book for Mathematical Formulas. Math being an open subject, a thing that cannot be patented and copyrighted, should have an open formulations book that has all math formulas in it. So I started this project.

I am writing what I know and what I can find on the internet, but I am sure there are a lot of things I missed out on, and there should be a lot of mistakes in this book. I hope you, the reader who loves mathematics, will spot them out,  reach me at mindaslab@protonmail.com, or +91 8428050777, so that I can correct it.

This book is hosted on codeberg.org, I encourage the reader to clone this book, make changes and submit it so that this book becomes more refined.

Let us, as free humans, give a libre matthematical formula book to this world.

Mathematical Symbols

Greek Alphabets

Upcase

Downcase

How to read

Α

α

alpha

Β

β

beta

Γ

γ

gamma

Δ

δ

delta

Ε

ε

epsilon

Ζ

ζ

zêta

Η

η

êta

Θ

θ

thêta

Ι

ι

iota

Κ

κ

kappa

Λ

λ

lambda

Μ

μ

mu

Ν

ν

nu

Ξ

ξ

xi

Ο

ο

omikron

Π

π

pi

Ρ

ρ

rho

Σ

σ, ς

sigma

Τ

τ

tau

Υ

υ

upsilon

Φ

φ

phi

Χ

χ

chi

Ψ

ψ

psi

Ω

ω

omega

Mathematical Constants

Metric Prefixes

Name Symbol Base 10 Decimal

quetta

Q

\$10^30\$

1000000000000000000000000000000

ronna

R

\$10^27\$

1000000000000000000000000000

yotta

Y

\$10^24\$

1000000000000000000000000

zetta

Z

\$10^21\$

1000000000000000000000

exa

E

\$10^18\$

1000000000000000000

peta

P

\$10^15\$

1000000000000000

tera

T

\$10^12\$

1000000000000

giga

G

\$10^9\$

1000000000

mega

M

\$10^6\$

1000000

kilo

k

\$10^3\$

1000

hecto

h

\$10^2\$

100

deca

da

\$10^1\$

10

\$10^0\$

1

deci

d

\$10^{−1}\$

0.1

centi

c

\$10^{−2}\$

0.01

milli

m

\$10^{−3}\$

0.001

micro

μ

\$10^{−6}\$

0.000001

nano

n

\$10^−9\$

0.000000001

pico

p

\$10^{−12}\$

0.000000000001

femto

f

\$10^{−15}\$

0.000000000000001

atto

a

\$10^{−18}\$

0.000000000000000001

zepto

z

\$10^{−21}\$

0.000000000000000000001

yocto

y

\$10^{−24}\$

0.000000000000000000000001

ronto

r

\$10^{−27}\$

0.000000000000000000000000001

quecto

q

\$10^{−30}\$

0.000000000000000000000000000001

Multiplication Tables

1 2 3

\$1 xx 1 = 1\$

\$1 xx 2 = 2\$

\$1 xx 3 = 3\$

\$1 xx 4 = 4\$

\$1 xx 5 = 5\$

\$1 xx 6 = 6\$

\$1 xx 7 = 7\$

\$1 xx 8 = 8\$

\$1 xx 9 = 9\$

\$1 xx 10 = 10\$

\$2 xx 1 = 2\$

\$2 xx 2 = 4\$

\$2 xx 3 = 6\$

\$2 xx 4 = 8\$

\$2 xx 5 = 10\$

\$2 xx 6 = 12\$

\$2 xx 7 = 14\$

\$2 xx 8 = 16\$

\$2 xx 9 = 18\$

\$2 xx 10 = 20\$

\$3 xx 1 = 3\$

\$3 xx 2 = 6\$

\$3 xx 3 = 9\$

\$3 xx 4 = 12\$

\$3 xx 5 = 15\$

\$3 xx 6 = 18\$

\$3 xx 7 = 21\$

\$3 xx 8 = 24\$

\$3 xx 9 = 27\$

\$3 xx 10 = 30\$

4

5

6

\$4 xx 1 = 4\$

\$4 xx 2 = 8\$

\$4 xx 3 = 12\$

\$4 xx 4 = 16\$

\$4 xx 5 = 20\$

\$4 xx 6 = 24\$

\$4 xx 7 = 28\$

\$4 xx 8 = 32\$

\$4 xx 9 = 36\$

\$4 xx 10 = 40\$

\$5 xx 1 = 5\$

\$5 xx 2 = 10\$

\$5 xx 3 = 15\$

\$5 xx 4 = 20\$

\$5 xx 5 = 25\$

\$5 xx 6 = 30\$

\$5 xx 7 = 35\$

\$5 xx 8 = 40\$

\$5 xx 9 = 45\$

\$5 xx 10 = 50\$

\$6 xx 1 = 6\$

\$6 xx 2 = 12\$

\$6 xx 3 = 18\$

\$6 xx 4 = 24\$

\$6 xx 5 = 30\$

\$6 xx 6 = 36\$

\$6 xx 7 = 42\$

\$6 xx 8 = 48\$

\$6 xx 9 = 54\$

\$6 xx 10 = 60\$

7

8

9

\$7 xx 1 = 7\$

\$7 xx 2 = 14\$

\$7 xx 3 = 21\$

\$7 xx 4 = 28\$

\$7 xx 5 = 35\$

\$7 xx 6 = 42\$

\$7 xx 7 = 49\$

\$7 xx 8 = 56\$

\$7 xx 9 = 63\$

\$7 xx 10 = 70\$

\$8 xx 1 = 8\$

\$8 xx 2 = 16\$

\$8 xx 3 = 24\$

\$8 xx 4 = 32\$

\$8 xx 5 = 40\$

\$8 xx 6 = 48\$

\$8 xx 7 = 56\$

\$8 xx 8 = 64\$

\$8 xx 9 = 72\$

\$8 xx 10 = 80\$

\$9 xx 1 = 9\$

\$9 xx 2 = 18\$

\$9 xx 3 = 27\$

\$9 xx 4 = 36\$

\$9 xx 5 = 45\$

\$9 xx 6 = 54\$

\$9 xx 7 = 63\$

\$9 xx 8 = 72\$

\$9 xx 9 = 81\$

\$9 xx 10 = 90\$

10

11

12

\$10 xx 1 = 10\$

\$10 xx 2 = 20\$

\$10 xx 3 = 30\$

\$10 xx 4 = 40\$

\$10 xx 5 = 50\$

\$10 xx 6 = 60\$

\$10 xx 7 = 70\$

\$10 xx 8 = 80\$

\$10 xx 9 = 90\$

\$10 xx 10 = 100\$

\$11 xx 1 = 11\$

\$11 xx 2 = 22\$

\$11 xx 3 = 33\$

\$11 xx 4 = 44\$

\$11 xx 5 = 55\$

\$11 xx 6 = 66\$

\$11 xx 7 = 77\$

\$11 xx 8 = 88\$

\$11 xx 9 = 99\$

\$11 xx 10 = 110\$

\$12 xx 1 = 12\$

\$12 xx 2 = 24\$

\$12 xx 3 = 36\$

\$12 xx 4 = 48\$

\$12 xx 5 = 60\$

\$12 xx 6 = 72\$

\$12 xx 7 = 84\$

\$12 xx 8 = 96\$

\$12 xx 9 = 108\$

\$12 xx 10 = 120\$

13

14

15

\$13 xx 1 = 13\$

\$13 xx 2 = 26\$

\$13 xx 3 = 39\$

\$13 xx 4 = 52\$

\$13 xx 5 = 65\$

\$13 xx 6 = 78\$

\$13 xx 7 = 91\$

\$13 xx 8 = 104\$

\$13 xx 9 = 117\$

\$13 xx 10 = 130\$

\$14 xx 1 = 14\$

\$14 xx 2 = 28\$

\$14 xx 3 = 42\$

\$14 xx 4 = 56\$

\$14 xx 5 = 70\$

\$14 xx 6 = 84\$

\$14 xx 7 = 98\$

\$14 xx 8 = 112\$

\$14 xx 9 = 126\$

\$14 xx 10 = 140\$

\$15 xx 1 = 15\$

\$15 xx 2 = 30\$

\$15 xx 3 = 45\$

\$15 xx 4 = 60\$

\$15 xx 5 = 75\$

\$15 xx 6 = 90\$

\$15 xx 7 = 105\$

\$15 xx 8 = 120\$

\$15 xx 9 = 135\$

\$15 xx 10 = 150\$

16

17

18

\$16 xx 1 = 16\$

\$16 xx 2 = 32\$

\$16 xx 3 = 48\$

\$16 xx 4 = 64\$

\$16 xx 5 = 80\$

\$16 xx 6 = 96\$

\$16 xx 7 = 112\$

\$16 xx 8 = 128\$

\$16 xx 9 = 144\$

\$16 xx 10 = 160\$

\$17 xx 1 = 17\$

\$17 xx 2 = 34\$

\$17 xx 3 = 51\$

\$17 xx 4 = 68\$

\$17 xx 5 = 85\$

\$17 xx 6 = 102\$

\$17 xx 7 = 119\$

\$17 xx 8 = 136\$

\$17 xx 9 = 153\$

\$17 xx 10 = 170\$

\$18 xx 1 = 18\$

\$18 xx 2 = 36\$

\$18 xx 3 = 54\$

\$18 xx 4 = 72\$

\$18 xx 5 = 90\$

\$18 xx 6 = 108\$

\$18 xx 7 = 126\$

\$18 xx 8 = 144\$

\$18 xx 9 = 162\$

\$18 xx 10 = 180\$

19

20

\$19 xx 1 = 19\$

\$19 xx 2 = 38\$

\$19 xx 3 = 57\$

\$19 xx 4 = 76\$

\$19 xx 5 = 95\$

\$19 xx 6 = 114\$

\$19 xx 7 = 133\$

\$19 xx 8 = 152\$

\$19 xx 9 = 171\$

\$19 xx 10 = 190\$

\$20 xx 1 = 20\$

\$20 xx 2 = 40\$

\$20 xx 3 = 60\$

\$20 xx 4 = 80\$

\$20 xx 5 = 100\$

\$20 xx 6 = 120\$

\$20 xx 7 = 140\$

\$20 xx 8 = 160\$

\$20 xx 9 = 180\$

\$20 xx 10 = 200\$

Analytical Geometry

Point

Distance

Distance between two points \$(x_1, y_1)\$ and \$(x_2, y_2)\$

\$d = sqrt { (x_1 - x_2)^2 + (y_1 - y_2)^2}\$

Collinear points

Line

Intersection of two lines

Parallel lines

Perpendicular lines

Check if line passes through a point

Plane

Check if line lies on a plane

Check if point lies on a plane

Check if two points are on the same side of plane

Angle between line and plane

Length Conversions

Area Conversions

Volume Conversions

Weight Conversions

Energy Conversions

Power Conversions

Speed Conversions

Temperature Conversions

\$C = 5/9 * (F - 32)\$

\$F = 9/5 * C + 32\$

\$K = C + 273.15\$

\$C = K - 273.15\$

\$F = (9/5) * (K - 273.15) + 32\$

\$K = (5/9) * (F - 32) + 273.15\$

2D

Square

\$A = s^2\$

\$P = 4s\$

Rectangle

\$A = l * b\$

\$P = 2(l + b)\$

Circle

\$A = pi * r^2\$

\$P = 2pi * r\$

Circle Sector

\$A = pi * r * theta\$

Where \$theta\$ is the angle of sector, in radians. \$r\$ is the radius of circle.

Triangle

\$A = 1/2 * b * h\$

\$s = {a + b + c} / 2\$

\$A = sqrt {s * (s - a) * (s - b) * (s - c)}\$

\$P = a + b + c\$

Quadrilateral

Parallelogram

\$A = b * h\$

Rhombus

Trapezium

Trapezoid

Ellipse

Area

\$A = π * a * b\$

Perimeter

\$P ~~ pi (a + b)\$

\$P ~~ pi sqrt { 2 * (a^2 + b^2) }\$

\$P ~~ pi 3/2 * (a+b) * sqrt { ab }\$

Parabola

Hyperbola

3D

Cube

Volume

\$V = s^3\$

Surface Area

\$A = 6.s^2\$

Cuboid

Volume

\$V = l.b.h\$

Surface Area

\$A = 2.(lb + bh +hl)\$

Cylinder

Volume

\$V = π.r^2.h\$

Surface Area

\$A = 2π.rh\$

Cone

Volume

Sphere

960px Sphere and Ball
Volume

\$4/3 pi r^3\$

Surface Area

\$4 pi r^2\$

Torus

Pyramid

Prism

Complex Numbers

1. Basic Definitions

Complex Number Standard Form:

\$z = a + bi\$

where a is the real part, b is the imaginary part, and i is the imaginary unit.

Imaginary Unit:

\$i^2 = -1\$

\$i^3 = -i\$

\$i^4 = 1\$

\$i^(4k) = 1, i^(4k+1) = i, i^(4k+2) = -1, i^(4k+3) = -i\$

Real and Imaginary Parts:

\$Re(z) = a\$

\$Im(z) = b\$

2. Complex Conjugate

Definition:

\$bar z = conj(z) = a - bi\$

Properties:

\$z + bar z = 2a = 2*Re(z)\$

\$z - bar z = 2bi = 2i*Im(z)\$

\$z * bar z = a^2 + b^2 = |z|^2\$

\$bar (bar z) = z\$

\$bar (z1 + z2) = bar z1 + barz2\$

\$bar (z1 * z2) = bar z1 * bar z2\$

\$bar frac {z1} {z2} = bar (z1) / bar (z2)\$

3. Modulus (Absolute Value)

Definition:

\$|z| = sqrt(a^2 + b^2) = sqrt(z * z*)\$

Properties:

\$|z| >= 0\$

\$|z| = 0 " if and only if " z = 0\$

\$|z1 * z2| = |z1| * |z2|\$

\$|z1/z2| = |z1|/|z2| " " (z2 != 0)\$

\$|z1 + z2| <= |z1| + |z2|\$ (Triangle Inequality)

\$||z1| - |z2|| <= |z1 - z2|\$

\$|z^n| = |z|^n\$

4. Argument (Phase)

Definition:

\$arg(z) = theta = arctan(b/a)\$ (with appropriate quadrant adjustment)

Principal Argument:

\$Arg(z) = theta " where " -pi < theta <= pi\$

Properties:

\$arg(z1 * z2) = arg(z1) + arg(z2) + 2pik\$

\$arg(z1/z2) = arg(z1) - arg(z2) + 2pik\$

\$arg(z^n) = n * arg(z) + 2pik\$

\$arg(z*) = -arg(z) + 2pik\$

5. Polar Form

Polar Representation:

\$z = r * (cos(theta) + i*sin(theta)) = r * e^(itheta)\$

where \$r = |z|\$ and \$theta = arg(z)\$

Euler’s Formula:

\$e^(itheta) = cos(theta) + i*sin(theta)\$ \$e^(-itheta) = cos(theta) - i*sin(theta)\$

Conversion Formulas:

Cartesian to Polar: \$r = sqrt(a^2 + b^2)\$ \$theta = arctan(b/a)\$ (with quadrant correction)

Polar to Cartesian: \$a = r * cos(theta)\$ \$b = r * sin(theta)\$

6. Arithmetic Operations

Addition:

\$(a1 + b1*i) + (a2 + b2*i) = (a1 + a2) + (b1 + b2)*i\$

Subtraction:

\$(a1 + b1*i) - (a2 + b2*i) = (a1 - a2) + (b1 - b2)*i\$

Multiplication:

\$(a1 + b1*i) * (a2 + b2*i) = (a1*a2 - b1*b2) + (a1*b2 + b1*a2)*i\$

Division:

\$(a1 + b1*i) / (a2 + b2*i) = [(a1*a2 + b1*b2) + (b1*a2 - a1*b2)*i\$ / (a2^2 + b2^2)]

Polar Form Operations:

\$z1 * z2 = r1*r2 * e^(i(theta1 + theta2))\$ \$z1 / z2 = (r1/r2) * e^(i(theta1 - theta2))\$

7. Powers and Roots

De Moivre’s Theorem:

\$z^n = r^n * e^(i*n*theta) = r^n * (cos(n*theta) + i*sin(n*theta))\$

nth Roots:

\$z^(1/n) = r^(1/n) * e^(i*(theta + 2pik)/n)\$

where k = 0, 1, 2, …​, n-1 gives all n distinct roots.

Square Roots:

\$sqrt(a + bi) = +-[sqrt((r + a)/2) + i*sgn(b)*sqrt((r - a)/2)\$]

where \$r = |a + bi|\$ and sgn(b) is the sign of b.

Principal nth Root:

\$z^(1/n) = |z|^(1/n) * e^(i*Arg(z)/n)\$

8. Exponential and Logarithmic Functions

Complex Exponential:

\$e^z = e^(a+bi) = e^a * e^(bi) = e^a * (cos(b) + i*sin(b))\$

Properties of Complex Exponential:

\$e^(z1 + z2) = e^z1 * e^z2\$ \$e^(z1 - z2) = e^z1 / e^z2\$ \$(e^z)^n = e^(n*z)\$ \$|e^z| = e^(Re(z))\$ \$arg(e^z) = Im(z) + 2pik\$

Complex Logarithm:

\$log(z) = ln(|z|) + i*(arg(z) + 2pik)\$

Principal Logarithm:

\$Log(z) = ln(|z|) + i*Arg(z)\$

Properties:

\$log(z1 * z2) = log(z1) + log(z2) + 2piki\$

\$log(z1/z2) = log(z1) - log(z2) + 2piki\$

\$log(z^n) = n*log(z) + 2piki\$

\$e^(log(z)) = z\$

\$log(e^z) = z + 2piki\$

9. Trigonometric Functions

Complex Sine:

\$sin(z) = (e^(iz) - e^(-iz)) / (2i)\$

\$sin(x + iy) = sin(x)*cosh(y) + i*cos(x)*sinh(y)\$

Complex Cosine:

\$cos(z) = (e^(iz) + e^(-iz)) / 2\$

\$cos(x + iy) = cos(x)*cosh(y) - i*sin(x)*sinh(y)\$

Complex Tangent:

\$tan(z) = sin(z) / cos(z) = (e^(iz) - e^(-iz)) / (i*(e^(iz) + e^(-iz)))\$

\$tan(x + iy) = [sin(2x) + i*sinh(2y)\$ / [cos(2x) + cosh(2y)]]

Fundamental Identities:

\$sin^2(z) + cos^2(z) = 1\$

\$sin(z + 2pi) = sin(z)\$

\$cos(z + 2pi) = cos(z)\$

\$tan(z + pi) = tan(z)\$

10. Hyperbolic Functions

Complex Hyperbolic Sine:

\$sinh(z) = (e^z - e^(-z)) / 2\$

\$sinh(x + iy) = sinh(x)*cos(y) + i*cosh(x)*sin(y)\$

Complex Hyperbolic Cosine:

\$cosh(z) = (e^z + e^(-z)) / 2\$

\$cosh(x + iy) = cosh(x)*cos(y) + i*sinh(x)*sin(y)\$

Complex Hyperbolic Tangent:

\$tanh(z) = sinh(z) / cosh(z)\$

\$tanh(x + iy) = [sinh(2x) + i*sin(2y)\$ / [cosh(2x) + cos(2y)]]

Relationships with Trigonometric Functions:

\$sin(iz) = i*sinh(z)\$

\$cos(iz) = cosh(z)\$

\$sinh(iz) = i*sin(z)\$

\$cosh(iz) = cos(z)\$

11. Special Values and Identities

Common Values:

\$e^(ipi) = -1\$ (Euler’s Identity)

\$e^(ipi/2) = i\$

\$e^(ipi/4) = (1 + i)/sqrt(2)\$

\$e^(2pii) = 1\$

Useful Identities:

\$cos(theta) = (e^(itheta) + e^(-itheta)) / 2\$

\$sin(theta) = (e^(itheta) - e^(-itheta)) / (2i)\$

\$1 + e^(itheta) = 2*cos(theta/2) * e^(itheta/2)\$

\$1 - e^(itheta) = -2i*sin(theta/2) * e^(itheta/2)\$

12. Geometric Interpretations

Distance Formula:

\$|z1 - z2| = " distance between " z1 " and " z2 " in complex plane"\$

Multiplication by i:

\$i * z " rotates " z " by " 90° " counterclockwise"\$

Multiplication by e^(iθ):

\$e^(itheta) * z " rotates " z " by angle " theta\$

Reflection:

\$z* " reflects " z " across the real axis"\$

13. Series Expansions

Exponential Series:

\$e^z = sum_(n=0)^oo (z^n)/(n!)\$

Sine Series:

\$sin(z) = sum_(n=0)^oo ((-1)^n * z^(2n+1))/((2n+1)!)\$

Cosine Series:

\$cos(z) = sum_(n=0)^oo ((-1)^n * z^(2n))/((2n)!)\$

Geometric Series:

\$1/(1-z) = sum_(n=0)^oo z^n " for " |z| < 1\$


Note: In these formulas, k represents any integer, and all angles are measured in radians unless otherwise specified.

Calculus

Differentiation

Elementry Functions

\$f'(x) = lim_{\Deltax->0} frac {f(x + \Delta x) - f(x)} {\Deltax}\$

\$frac{ d e^x } {dx} = e^x\$

\$frac{ d ln(x) } {dx} = 1 / x , x > 0\$

\$frac{ d a^x } {dx} = a^x ln(a) , a > 0, a ne 1\$

\$frac{ d sqrt(x) } {dx} = 1 / {2sqrt(x)}\$

Trigonometric Functions

\$frac { d sin x } {dx} = cosx\$

\$frac { d cos x } {dx} = -sinx\$

\$frac { d tan x } {dx} = sec^2x , x ne (2n+1). pi/2 , n in NN\$

\$frac { d cot x } {dx} = cosec^2x , x ne n pi , n in NN\$

\$frac { d sec x } {dx} = secx * tanx , x ne (2n+1) * pi , n in NN\$

\$frac { d cosec x } {dx} = cosecx * cot, x ne n pi , n in NN\$

Hyperbolic Functions

\$frac{ d sinh x } {dx} = coshx\$

\$frac{ d cosh x } {dx} = sinhx\$

\$frac{ d tanh x } {dx} = sech^2x\$

\$frac{ d coth x } {dx} = -cosech^2x\$

\$frac{ d sech x } {dx} = - sechx * tanhx\$

\$frac{ d cosech x } {dx} = - cosechx * cothx\$

Inverse Trigonometric Functions

\$frac {d sin^ -1 x} {dx} = frac{1}{sqrt {1 - x^2} } , -1 < x < 1 \$

\$frac {d cos ^ -1 x} {dx} = frac{-1}{sqrt {1 - x^2} } , -1 < x < 1\$

\$frac {d tan ^ -1 x} {dx} = frac{1}{1 + x^2}\$

\$frac {d cot ^ -1 x} {dx} = frac{-1}{1 + x^2}\$

\$frac {d cosec ^ -1 x} {dx} = frac{-1} { |x| sqrt(x^2 - 1)} , |x| > 1\$

\$frac {d sec ^ -1 x} {dx} = frac{1} { |x| sqrt(x^2 - 1)}\$

Inverse Hyperbolic Functions

\$frac {d sinh ^ -1 x} {dx} = frac{1} { sqrt(x^2 + 1)} \$

\$frac {d cosh ^ -1 x} {dx} = frac{-1} { sqrt(x^2 + 1)}\$

\$frac {d tanh ^ -1 x} {dx} = frac{1} {1 - x^2} \$

\$frac {d cot ^ -1 x} {dx} = frac{1} {x * (1 - x^2)} \$

stem[frac {d cosech ^ -1 x} {dx} = frac{1} {x sqrt(x^2 + 1)}]

\$frac {d sech ^ -1 x} {dx} = frac{-1} {x sqrt(x^2 + 1)}\$

Differential Calculus Rules

\$frac {dC} {dx} = 0\$ , where \$C\$ is a constant

\$frac {d C f(x)} {dx} = C. frac{d f(x)} {dx}\$ , where \$C\$ is a constant

\$frac {d x^n} {dx} = n * x ^ {n-1}\$

\$frac {d f^n(x)} {dx} = n * f(x) ^ {n-1} * frac {df(x)} { dx}\$

\$frac {d f(x) + g(x)} {dx} = frac {d f(x)} {dx} + frac {dg(x)} {dx}\$

\$frac {d f(x) - g(x)} {dx} = frac {d f(x)} {dx} - frac {dg(x)} {dx}\$

\$frac {d f(x) + g(x)} {dx} = frac {d f(x)} {dx} * frac {dg(x)} {dx}\$

\$Delta(u / v) = {u * Delta v + v * Delta u} / v^2\$, where \$u = f(x)\$, \$v = g(x)\$, \$Delta\$ is \$d/dx\$

If \$h(x) = f(g(x))\$, then differential of \$h(x)\$ is \$h'(x) = f'(g(x)) * g'(x)\$

\$dz/dx = dz/dy * dy/dx\$

Integration

stem:[]

stem:[]

stem:[]

stem:[]

Financial

Simple Interest

\$I = {PNR} / 100\$

Compound Interest

\$A = P (1 + R / 100)^N\$

\$I = A - P = P (1 + R / 100)^N - P\$

\$I = P (1 + R / 100)^N - P\$

EMI

\$E = P * R * (1 + R)^N / ((1 + R)^N - 1)\$

Laplacian

Logarithms

Matrix

Probability & Statistics

Trigonometry

Pythagoras theorem

\$hyp^2 = sqrt {opp^2 + adj^2}\$

Trigonometric Ratio’s

\$sin(theta) = {opp} / {hyp}\$

\$cos(theta) = {adj} / {hyp}\$

\$tan(theta) = {opp} / {adj}\$

\$cot(theta) = {hyp} / {opp}\$

\$sec(theta) = {adj} / {hyp}\$

\$cosec(theta) = {hyp} / {adj}\$

\$cosec(theta) = 1 / {sin(theta)}\$

\$sec(theta) = 1 / {cos(theta)}\$

\$cot(theta) = 1 / {tan(theta)}\$

\$sin(theta) = 1 / {cosec(theta)}\$

\$cos(theta) = 1 / {sec(theta)}\$

\$tan(theta) = 1 / {cot(theta)}\$

\$tan(theta) = {sec(theta)} / {cosec(theta)}\$

\$cot(theta) = {cosec(theta)} / {sec(theta)}\$

Trigonometric Ratio Table

Angle (°) Angle (rad) sin(θ) cos(θ) tan(θ) csc(θ) sec(θ) cot(θ)

\$0\$

\$0\$

\$0\$

\$1\$

\$0\$

\$∞\$

\$1\$

\$∞\$

\$30\$

\$π/6\$

\$1/2\$

\$sqrt(3)/2\$

\$1/sqrt(3)\$

\$2\$

\$2/sqrt(3)\$

\$sqrt(3)/3\$

\$45\$

\$π/4\$

\$sqrt(2)/2\$

\$sqrt(2)/2\$

\$1\$

\$sqrt(2)\$

\$sqrt(2)\$

\$1\$

\$60\$

\$π/3\$

\$sqrt(3)/2\$

\$1/2\$

\$sqrt(3)\$

\$2/sqrt(3)\$

\$2\$

\$sqrt(3)\$

\$90\$

\$π/2\$

\$1\$

\$0\$

\$∞\$

\$1\$

\$∞\$

\$0\$

Trigonometric Ratios Identities

\$sin^2(theta) + cos^2(theta) = 1\$

\$sec^2(theta) - tan^2(theta) = 1\$

\$cosec^2(theta) - cot^2(theta) = 1\$

Complementary and Supplementary Identities

\$sin(90^{o} - theta) = cos theta \$

\$cos(90^{o} - theta) = sin theta \$

\$tan(90^{o} - theta) = cot theta \$

\$cosec(90^{o} - theta) = sec theta \$

\$sec(90^{o} - theta) = cosec theta \$

\$cot(90^{o} - theta) = tan theta \$

\$sin (180° - θ) = sin θ\$

\$cos (180° - θ) = -cos θ\$

\$tan (180° - θ) = -tan θ\$

\$cosec (180° - θ) = cosec θ\$

\$sec (180° - θ) = -sec θ\$

\$cot (180° - θ) = -cot θ\$

Trigonometry Periodic Identities (in Radians)

\$sin (π/2 – θ) = cos θ\$

\$cos (π/2 – θ) = sin θ\$

\$sin (2π + θ) = sin θ\$

\$cos (2π + θ) = cos θ\$

\$sin (π/2 + θ) = cos θ\$

\$cos (π/2 + θ) = – sin θ\$

\$sin (π – θ) = sin θ\$

\$cos (π – θ) = – cos θ\$

\$sin (π + θ) = – sin θ\$

\$cos (π + θ) = – cos θ\$

\$sin (3π/2 – θ) = – cos θ\$

\$cos (3π/2 – θ) = – sin θ\$

\$sin (3π/2 + θ) = – cos θ\$

\$cos (3π/2 + θ) = sin θ\$

\$sin (2π – θ) = – sin θ\$

\$cos (2π – θ) = cos θ\$

Sum and Difference Identities

\$sin(A+B) = sin A cos B + cos A sin B\$

\$sin(A-B) = sin A cos B - cos A sin B\$

\$cos(A+B) = cos A cos B - sin A sin B\$

\$cos(A-B) = cos A cos B + sin A sin B\$

\$tan(A+B) = {(tan A + tan B)} / {(1 - tan A tan B)}\$

\$tan(A-B) = {(tan A - tan B)} / {(1 + tan A tan B)}\$

\$cot(A + B) = {cot A cot B -1} / {cot B - cot A}\$

\$cot(A - B) = {cot A cot B + 1} / {cot B - cot A}\$

\$2 sin A⋅cos B = sin(A + B) + sin(A - B)\$

\$2 cos A⋅cos B = cos(A + B) + cos(A - B)\$

\$2 sin A⋅sin B = cos(A - B) - cos(A + B)\$

Sum and Product Identities

\$sinx⋅cosy = {sin(x + y) + sin(x − y)}/2\$

\$cosx⋅cosy = {cos(x + y) + cos(x − y)}/2\$

\$sinx⋅siny = {cos(x − y) − cos(x + y)}/2\$

\$sinx + siny = 2(sin((x + y)/2)cos((x − y)/2))\$

\$sinx − siny = 2(cos((x + y)/2)sin((x − y)/2))\$

\$cosx + cosy = 2(cos((x + y)/2)cos((x − y)/2))\$

\$cosx − cosy = −2(sin((x + y)/2)sin((x − y)/2))\$

Inverse Trigonometry Formulas

\$sin^-1 (-x) = -sin^-1 x\$

\$cos^-1 (-x) = π - cos^-1 x\$

\$tan^-1 (-x) = -tan^-1 x\$

\$cosec^-1 (-x) = -cosec^-1 x\$

\$sec^-1 (-x) = π - sec^-1 x\$

\$cot^-1 (-x) = π - cot^-1 x\$

Half, Double, and Triple-Angles Trigonometric Ratios Identities

\$sin 2θ = 2 sinθ cosθ\$

\$cos 2θ = cos^2θ - sin^2θ\$

\$cos 2θ = 2 cos^2θ - 1\$

\$cos 2θ = 1 - 2 sin^2θ\$

\$cos 2θ = {1 - tan^2 θ}/{1 + tan^2 θ}\$

\$tan 2θ = {2 tanθ} / {1 - tan^2θ}\$

\$sec 2θ = sec^2 θ / {2 - sec^2 θ}\$

\$cosec 2θ = {sec θ. cosec θ} / 2\$

\$cot 2θ = {cot θ - tan θ}/2\$

\$sin(theta / 2) = +- sqrt { {1 - cos theta } / 2}\$

\$cos(theta / 2) = +- sqrt { {1 + cos theta } / 2}\$

\$tan(theta / 2) = +- sqrt { {1 - cos theta} / { 1 + cos theta } }\$

\$sin 3θ = 3sin θ - 4sin^3θ\$

\$cos 3θ = 4cos^3θ - 3cos θ\$

\$tan 3θ = (3tanθ - tan^3θ)/(1 - 3tan^2θ)\$